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ABSTRACT 

 As of September 2007, improvised explosive devices (IED) account for 43% of 

U.S. casualties in Iraq – the largest single cause of death.  One reason for their high rate 

of effectiveness is that they are extremely difficult to detect.  This research develops a 

tool for selecting routes that will best employ unmanned aerial systems (UAS) for the 

purpose of detecting IED or related activity.  We refer to this tool as IED Search 

Optimization Model (ISOM).  ISOM – which uses prediction model results as an 

underpinning – accounts for factors such as winds, sensor sweep-width, and aircraft de-

confliction.  We formulate the problem as an Integer Program and optimally solve it to 

select the best routes.  Initial evaluation of ISOM through field experiments with actual 

UAS suggest that the tool produces realistic routes which can be flown in the expected 

amount of time.  Furthermore, these routes result in a 42% increase in the likelihood of 

achieving a detection opportunity over searching nodes in a random manner.  ISOM 

could be implemented as a “reach-back” capability with an analyst providing daily routes 

for tactical operators. 
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EXECUTIVE SUMMARY 

This thesis develops a routing tool for Unmanned Aerial Systems (UAS) tasked 

with interdiction of Improvised Explosive Devices (IED) that we refer to as IED Search 

Optimization Model (ISOM).  ISOM uses optimization models and algorithms to 

leverage recent developments in IED prediction as well as emerging UAS and sensor 

technology. Tactical level operators can use ISOM to determine routes that will best 

employ their UAS for the purpose of detecting IED or IED related activity. 

ISOM receives output from an existing IED prediction model and uses it to 

establish relative values for searching various portions within a sector of operation.  In 

the type of operations considered, there are a small number of UAS available, each with a 

search time determined by its fuel load.  To model interdiction of IED with the aid of a 

prediction model, we discretize the space around roadways within the sector of operation 

into 200 meter by 200 meter square cells. We then use the prediction model to assign 

values that represent the likelihood of an IED event occurring in the respective cell the 

following day and treat these values as rewards which can be achieved by a UAS after it 

has searched the respective cells.  Next, we reduce the number of cells to include only 

those above a threshold which will reduce the size of the problem without any significant 

reduction in solution quality.  We then establish nodes at the center of each remaining 

cell that serve as a network of UAS waypoints with supplementary nodes added to 

represent UAS operating bases.  Next, we discretize the search period into time-steps, and 

calculate travel times between each pair of nodes – rounded up to the next integer time-

step.  These travel times represent a “cost” incurred by a UAS in order to achieve the 

associated reward.  The output of the model is a set of routes which focus UAS search 

efforts in the most likely areas of IED occurrence and result in the maximum number of 

detection opportunities within the search time allowed by the UAS endurance. 

ISOM accounts for factors such as winds, sensor sweep-width, and aircraft de-

confliction.  Winds have a significant influence on UAS operations because they tend to 

operate at low speeds and can potentially be met with winds in excess of their 

capabilities.  ISOM receives wind measurements and/or forecasts as input and calculates 
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groundspeeds based on wind speed, wind direction, desired course, and UAS airspeed.  

Travel times are then determined based on groundspeed and distance between nodes 

resulting in routes that are achievable in prevailing wind conditions.  Sensor sweep-width 

establishes a limit to the coverage of cells adjacent to each other.  ISOM incorporates 

rules for clustering nodes according to given sensor sweep-widths resulting in efficient 

coverage and fewer turns for the UAS.  We ensure de-confliction of UAS operating 

within a limited block of altitude by ensuring that UAS maintain a minimum lateral 

distance between one another.  In addition to addressing these factors, ISOM achieves a 

moderate restriction of the problem by identifying arcs whose removal result in little or 

no impact on the optimal value.  

ISOM is a combination of an Excel spreadsheet designed to receive user inputs 

and perform preprocessing with the use of macros written in Visual Basic for 

Applications, and an integer programming model implemented in the General Algebraic 

Modeling System (GAMS) to find optimal or near-optimal solutions using commercially 

available optimization software.  The model receives various input parameters including 

UAS airspeed and sweep-width, observed wind direction and speed, as well as criteria for 

restricting the integer programming model for the purpose of speeding the solution time. 

We accomplish testing of ISOM at Camp Roberts, California during exercises 

conducted through the NPS-USSOCOM Cooperative Field Experimentation Program.  In 

the absence of available real-world data including a history of IED events and related 

geographic features, we generate data to mimic prediction model output over the Camp 

Roberts area for these experiments.  For a comparison with current methods, we present 

the same route planning scenario to a group of experienced UAS operators currently 

deployed to Iraq.  While we await the results of this exercise at the time of this summary, 

preliminary examination reveals that the model produces on average a 75% reduction in 

problem size while obtaining solutions within 2% of the optimal value of a base case.  It 

produces routes which achieve a 42% increase in the likelihood of achieving a detection 

opportunity over searching the nodes at random.  ISOM could be utilized as a reach back 

capability with an analyst providing daily routes via the internet. 
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I. INTRODUCTION  

A. BACKGROUND  

As of September 8, 2007, improvised explosive devices (IED) have accounted for 

1,609 of the 3,754 total confirmed U.S. fatalities in Iraq – 43% (iCasualties.org 2007).  

On June 27, 2005, Deputy Secretary of Defense Gordon England issued Department of 

Defense (DoD) Directive 2000.19, which established the Joint IED Defeat Task Force 

(JIEDD TF) and designated it as the focal point for all efforts in the DoD to defeat IEDs 

(DoD 2005).  Later renamed Joint IED Defeat Organization (JIEDDO), the group has 

presented a three-part strategy to solving the problem: “Attack the Network,” “Defeat the 

Device,” and “Training the Force” (DoD 2006).  The first part of this strategy deals with 

preventing the emplacement of IEDs by attacking enemy vulnerabilities at multiple 

points in the IED system.  The second deals with defeating the device once it is emplaced 

and the third is to facilitate the establishment and growth of coalition and partner nation 

counter-IED capability by training the forces to implement the first two. 

Beyond this strategy, the response to the IED problem has been further divided 

into five lanes: predict, prevent, detect, neutralize, and mitigate.  Of these, detection has 

been the most challenging part of the IED problem and thus far Intelligence, 

Surveillance, and Reconnaissance (ISR) assets have been ineffective in this effort.  In 

fact, most IED detections have been made visually by operators on the ground.  

According to Christine DeVries, a spokesperson for JIEDDO, “The best sensor we have 

for detecting an IED is an individual soldier’s or Marine’s eyes” (Chisholm 2005).   

IEDs are notorious for being difficult to detect and neutralize.  IEDs can 
be packaged in myriad objects, such as burlap sacks, trash, toys, dead 
animal carcasses, buckets or cinder blocks.  They can be attached to 
telephone poles, be placed in guardrails or buried under the road.  IEDs 
can even be packaged to look like a concrete roadside curb.  

(Chisholm 2005) 

A consequence of the previous statements is that visual detection does not usually 

occur until after one is already in range of the threat.  Keeping in mind that IEDs in Iraq 

have been created with estimated kill zones of up to 125 meters and that coalition 
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vehicles commonly travel at speeds greater than 20 mph in order to reduce exposure to 

other threats, consider the following example: Assume that a small IED has a kill radius 

of 50 meters, perception-reaction time is 3.0 seconds, and breaking distance of 14 meters.  

Then, a vehicle traveling at 20 mph would need to recognize the IED at a distance of 90 

meters in order to remain clear of its kill zone.  With litter and debris scattered across the 

roads of Iraq, relying on the human eye for IED detection makes for risky and tedious 

operations. 

During the course of the conflict in Iraq, the U.S. military has taken several 

reactive measures to mitigate the IED threat including: up-armoring vehicles, fielding 

jammers to protect against radio controlled IEDs, and the ad-hoc use of airborne sensors 

to search for emplaced IEDs.  As of June 2007, the military has spent more than $4 

billion to devise tactics, armaments and technological means to defeat these bombs.  One 

logical measure of effectiveness of these efforts is the rate of success of IEDs inflicting 

casualties over the course of time as depicted in Figure 1.  As this data shows, the current 

rate of success of these devices has fallen to one sixth that of June 2003.  Despite this 

fact, overall casualty rates due to IEDs have continued to increase as depicted in Figure 2.  

The reason for this is two-fold.  First, the insurgency has simply increasing the volume of 

devices that they emplace in order to increase their overall effect.  And second, they have 

adapted quickly by developing more effective IEDs and adjusting their tactics to mitigate 

ours. 

 
Figure 1.   Iraq IED incident trends (From Schachtman 2007). 



3 

 
Figure 2.   Record of U.S. fatalities in Iraq due to IEDs (From iCasualties.org 2007). 

 

As a result of the continued effectiveness of these devices, there has been much 

debate in recent months over the effectiveness of the IED defeat effort including the use 

of UAS and other airborne assets to counter them.  During a PBS Newshour interview by 

journalist Ray Suarez on June 21, 2007, General Montgomery Meigs, head of JIEDDO, is 

quoted as saying “We have improved in less than a year the UAS -- unmanned aerial 

vehicle -- profile in country. It's had a major impact on both going after networks and 

placers” (Suarez, 2007).  In seeming contrast to this statement, General Ronald Keys, 

commander of the Air Force’s Air Combat Command offered criticism of the use of 

airborne assets to find IEDs in an article published the same day.  According to Keys, the 

number of IEDs found by UAS, surveillance aircraft or combat jets outfitted with 

advanced targeting pods per flight hour is very low.  Keys elaborates by citing that 

airborne assets spend much time flying up and down streets that no coalition forces will 

be on for another 12 hours and also compares the area of operations (AO) in Iraq to a 

junkyard, with too many false positives (Fabey, 2007). 

In light of the continuing IED problem, many experts have advocated that the 

only effective strategy to counter IEDs is one that focuses not on finding IEDs that are 

already placed but by attacking the network that produces the devices – finding out where 

the explosives come from and who the bomb makers are.  With a recent change in 

leadership at Multi-National Corps – Iraq (MNC-I), a new emphasis has been placed on 
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the use of counterinsurgency doctrine commonly referred to as “COIN.”  In a June 2007 

memo, Lieutenant General Raymond T. Odierno provided counterinsurgency guidance 

with ten, mutually reinforcing principles that he expects to be “operationalized” in Iraq.  

One of these principles, which relates to the debate discussed above, is to look beyond 

the IED and to get the network that placed it.  General Odierno elaborates by stating that 

commanders should map IED patterns and use friendly movements to trigger enemy 

action and coordinate reconnaissance assets to identify IED teams moving into position.  

Furthermore, he states that UAS should be used to trace enemy firing teams back to their 

caches and assembly areas (Odierno, 2007). 

B. RESEARCH GOAL 

Based on the casualty numbers cited earlier, we can see that IEDs have had a 

significant impact in the conflict in Iraq and there is no reason to expect that they will not 

continue to play a similar role in future conflicts against insurgencies.  While we 

acknowledge that the COIN based plan for attacking the network behind these devices 

will likely have the largest impact in a counter IED strategy, we believe that a 

comprehensive approach is still necessary if we are to mitigate this threat to the 

maximum extent possible.  Additionally, we question whether the lack of effectiveness of 

airborne sensors to date is due to an inherent inability, or if the methods of employing 

these assets have been inefficient and uncoordinated. 

In order to minimize the effectiveness of the IED threat, we believe that a method 

for improving the probability of success of ISR assets in detecting IEDs and hence 

minimizing risk to troops should continue to be explored.  And while there is skepticism 

regarding IED detection with airborne sensors, industry continues to pursue these 

technologies and develop new sensors.  A concurrent effort to develop a concept of 

operations (CONOPS) for such a sensor not only makes sense from a standpoint of 

maximizing their effectiveness at initial fielding, but may also help prove their 

effectiveness in the first place.  We believe that an effective surveillance strategy which 

focuses on the most likely locations of IED emplacement, closely coordinated with blue 

force activities will bear fruit not only in detecting IEDs already emplaced, but more 
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importantly, catching insurgents in the act.  Furthermore, although the counterinsurgency 

operations aimed at attacking the network rely heavily on human intelligence, each 

successful detection provides a window into the network behind it – particularly if 

insurgents are caught in the act.  Therefore, we believe that such an effort is not at odds 

with the COIN guidance recently provided by MNC-I, but rather in-line with it.   

This thesis develops a routing tool that leverages recent developments in IED 

defeat efforts and optimizes the employment of UAS and emerging sensor technology for 

the interdiction of IED.  We define interdiction as those actions taken to confront and halt 

the activities leading to IED incidents and state our intent as to maximize the number of 

detection opportunities presented to UAS sensors including situations where insurgents 

are in the act of emplacing the IED as well as detection of IED which are already in 

place.  Furthermore, we refer to the tool we develop for this purpose as IED Search 

Optimization Model (ISOM).  We accept that vehicle borne IED and associated activities 

are not likely to be detected by UAS assets and rule them out as potential targets in our 

model.  Some recent advancement that is fundamental to our work is the development of 

IED prediction models. Our analysis uses output from IED prediction models (developed 

as a guide to concentrate search efforts) and established vehicle routing models as a 

starting point in the formulation of a new model for the optimization of UAS routing 

specific to IED interdiction.  Our study considers a heterogeneous fleet (2-3 types) of 

UAS and focuses on one effort per Air Tasking Order cycle – one sortie per UAS 

involved.  Aspects specifically not addressed include dynamic re-tasking, and factors 

affecting aircraft availability such as maintenance and other logistical concerns. 

C. LIMITATIONS 

Ostensibly, the UAS that would be ideally suited for the types of operations we 

are studying are the larger UAS such as Pioneer and Predator.  However, it is not 

practical to expect these types of UAS to be dedicated to a study such as ours so we 

consider the use of smaller UAS for a low level proof of concept.  Fortunately, the Naval 

Postgraduate School and the United States Special Operations Command (USSOCOM) 

have been conducting a series of experiments known as the NPS-USSOCOM 
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Cooperative Field Experimentation Program.  These exercises which are conducted 

periodically at Camp Roberts, California involve several small UAS and present an ideal 

opportunity to test ISOM which may then be scaled up to represent larger UAS. 

One disadvantage to using smaller UAS is that they are not capable of carrying 

the most advanced sensors available.  However, the intent of our study is to maximize the 

number of detection opportunities that occur based on route selection, not on sensor 

development.  Therefore, we rationalize that, for the purpose of our study, the use of 

small UAS equipped with simple electro-optical sensors can be used to imitate larger 

UAS equipped with sophisticated sensors.  Furthermore, as discussed in Chapter II, micro 

UAS have had some success in detecting IED and in fact, at the time of this writing, there 

are new types being deployed to Iraq for the specific purpose of identifying IEDs 

(Rosenberg, 2007).  Depending on their effectiveness, it may be the case that these 

vehicles, routed optimally, may turn out to be the ideal instrument for IED interdiction. 

D. ASSUMPTIONS 

While our primary focus is to make efficient use of given assets we present an 

overview of emerging sensor technology in Chapter II.  We do this in order to consider 

some sensors which may be ideally suited for IED detection in conjunction with our 

model.  A key assumption then is that either (i) a sensor which is effective at identifying 

IEDs and designed for use with larger UAS will emerge or (ii) micro UAS will prove 

effective in identifying IEDs or IED activity.  In any case we proceed as though our 

sensors have perfect detection capability and focus on presenting the maximum number 

of detection opportunities to them.  Furthermore, we begin our study by assuming that 

IED are static events which last for indefinite lengths of time and develop a simple model 

to represent this case.  After establishing this foundation we then extend the model to 

treat IED events as having time windows which are defined by blue force locations and 

activity. 
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E. STRUCTURE OF THESIS AND CHAPTER OUTLINE 

This thesis is organized into five chapters including the Introduction.  Chapter II 

provides a review of literature on IED defeat efforts and UAS employment as well as a 

thorough background on the field of Vehicle Routing Problems (VRP).  We present the 

formulation of our Integer Program (IP) model in Chapter III after a discussion of 

development considerations.  In Chapter IV, we present results and analysis based on 

several experiments conducted during two field exercises at Camp Roberts, California.  

Chapter V summarizes the research, presents the main findings and insights, and 

discusses the potential future work. 
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II. LITERATURE REVIEW 

A. IED DEFEAT EFFORTS 

1. Sensors 

Between 2003 and 2005, DoD spent more than $375 million on the IED defeat 

effort (Chisholm 2005) and in January 2006, JIEDDO was allocated a $3-billion budget 

to develop counter-IED technology (Levine 2006).  With this vast anti-IED research and 

development effort underway, there has been significant progress in several areas of 

technology.  One area of technological development that is of particular relevance to our 

study is in the field of airborne sensors; and while there is some skepticism of airborne 

sensors purported to be effective at detecting IEDs (Trimble 2006), industry has 

continued to pursue this effort.  Some types of sensors that have been seriously 

considered for IED detection are change detection, multispectral imaging and 

hyperspectral imaging (HSI). 

Change detection is a system which detects changes in an environment by 

comparing two, high-resolution photograph mosaics.  The Marine Corps Warfighting Lab 

conducted a limited technical assessment of one change detection system known as 

Airborne Volumetric Change Detection System in May 2005.  This assessment concluded 

that Airborne Volumetric Change Detection System was impractical for operational use 

in detecting IEDs due to excessive false alarm rates and lengthy processing time. 

(Funkhouser 2006) 

Multispectral imaging is the science of taking multiple images at different 

(disjoint) parts of the spectrum.  By selecting the proper wavelengths, many militarily 

important items such as camouflage, thermal emissions and hazardous waste can be 

detected (Pike and Aftergood 2006).  HSI takes this concept a step further by creating a 

larger number of higher resolution images from a contiguous part of the spectrum.  This 

creates a great increase in information, which allows the use of methods such as 

bloodhounding (i.e. detection of unique spectral images) and anomaly detection (i.e. 

detection of an object that is different from its surroundings including disturbed earth), as 

well as change detection. 
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The US Army is preparing to assess the potential of [HSI] payloads for 
UAS, which could create a new class of surveillance technology and one 
that may be ideally suited for the task of detecting IEDs…”  According to 
Bob D’Amico of BAE Systems: “The promise of hyperspectral 
[technology] has not really come until now...  This is the beginning of it. 
We think the technology is ripe and it’s ready to go, regardless of the 
reputation.  

(Trimble 2006) 

An example of HSI is presented in Figure 3.  The left image is a conventional 

three-color image (printed in grey scale) of the area. Mine widths are roughly equal to a 

pixel width and the mines are invisible on the full color image.  In the HSI image (right 

half of the picture), mines are clearly depicted in white (McFee and Ripley 1997). 

 
Figure 3.   Surface-laid mine detections (From McFee and Ripley 1997). 

 

One important factor influencing the effectiveness of these sensors in detecting 

IEDs is the manner in which they have been employed.  While no formal CONOPS has 

been formulated for these types of sensors, during limited technical assessments they 

have been employed using an area search, sweeping over every square inch of a large 

area rather than focusing on key hot spots.  This leads us to another important area of the 
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IED defeat effort – prediction – and we provide a more thorough discussion of CONOPS 

and limited technical assessments in Section B. 

2. Prediction Models 

At least two different models have been developed to predict the placement of 

IEDs in Iraq.  Riese (2006) developed a tool known as Threat Mapper, a work in progress 

that provides a spatial predictive capability against IEDs and other threats.  Now 

employed by the Johns Hopkins University Applied Physics Lab (JHUAPL), Riese did 

the bulk of this work while on active duty and assigned to U.S Strategic Command.  An 

example of Threat Mapper output is presented in Figure 4.  From this figure we can 

identify areas of various levels of threat which are depicted using color variation in a 

manner similar to a topographical map. 

 
Figure 4.   Example output from Threat Mapper (From Riese 2006). 

 

Additionally, Lantz (2006) developed a spatio-temporal model to forecast likely 

locations of IED emplacement and has applied this model to real, classified IED data 

assembled from several diverse sources.  These models discretize the area of interest into 

a grid of square cells and consider only cells within a given distance of known roads.  
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They then assign a value to each cell, which represents the likelihood of an IED attack in 

that cell based on various model inputs such as historical IED events, infrastructure and 

geography, and coalition force activity.  The output is a map graphically depicting the 

likelihood of IEDs throughout the region on the next day.  These models, while 

imperfect, have shown promise as decision aids for commanders in Iraq in planning 

convoys, patrols, and other ground operations (Lantz 2006 and Riese 2006). 

B. UAS EMPLOYMENT 

UAS are broken down into a tiered classification system which we depict in 

Figure 5.  The primary missions of UAS in Operation IRAQI FREEDOM that fall in the 

Tier 1 and above categories are point surveillance, target following, area search, route 

reconnaissance, and IED detection (Owen, et al. 2005).  Missions in Iraq flown by 

Pioneer, Scan Eagle, and Shadow UAS usually service a list of targets given to them by 

higher intelligence units.  These target lists include various sites such as suspected 

insurgent safe houses, suspected weapons caches and mortar points of origin as well as 

direct support for raids, patrols, convoys and other operations.  Based on the author’s 

experience while serving with Marine Unmanned Aerial Vehicle Squadron 2 (VMU-2) 

and deployed to Al Taqaddum Airbase in Iraq during 2004 and again in 2005, routing for 

each mission is done manually by UAS operators and often these UAS respond to 

dynamic re-tasking for unpredicted events that occur during the mission: IED attacks, 

ambushes, patrols, downed aircraft, etc.  Anytime that a UAS is not actively engaged 

servicing a target list or responding to dynamic re-tasking, is usually spent arbitrarily 

sweeping roads for any unusual activity or other signs which might lead to detection of 

IEDs. 

Although both the Army and Marine Corps have conducted limited technical 

assessments of various Tier 1 and 2 type sensors for IED detection, no formal CONOPS 

have been developed for employment of such sensors.  These assessments have generally 

used an area search approach, covering a large area with a “lawnmower search” to 

generate a graphic mosaic of the area for change detection comparison (Owen, et al. 

2005). 
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Figure 5.   Naval UAS Family of Systems (From Kelly 2006). 

 

Another possibility to consider is the use of small UAS which can weigh less than 

30 pounds and are equipped with simple electro-optic and infrared cameras.  One such 

vehicle produced by Honeywell Corporation known as the Micro Air Vehicle is currently 

being deployed to Iraq specifically for detection of IEDs.  This circular vehicle, which is 

just 13 inches in diameter and weighs only 16 pounds, will be the first ducted-fan UAS to 

be used in combat operations.  Small enough to be carried in a backpack, it operates like 

a helicopter and can fly down and hover at low altitudes to investigate possible threats.  A 

UAS such as this, if proven capable of detecting IEDs, could certainly benefit from a well 

developed, optimization based, concept of operations (Rosenberg, 2007). 

And while optimization models have been developed for various UAS missions 

including special operations (Kress and Royset 2007) and tactical reconnaissance 

missions in general (Moser 1990), the only optimization based method for employing 

UAS specifically for IED detection that the author is aware of is Jones (2006).  The stated 

goal of Jones’ thesis is “to develop models to determine the optimal allocation of sensor 

resources to search for IEDs along a specified road sector, where a road sector comprises 

the entire space to be searched.”  Jones proceeds by formulating an IP to maximize the 
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expected number of segments “determined” with a finite number of looks N allocated a 

priori based on UAS availability.  In this model, a segment is considered to be 

“determined” if there is strong evidence of either the presence or absence of an IED in the 

segment.  Jones (2006) assumes independence between segments and recommends 

further consideration of the case where IED prior probabilities are correlated.  An 

example given involves a spatial process that describes the prior belief on the presence or 

absence of IEDs in the road segments which is then used as a basis from which to 

allocate sensors. 

C. VEHICLE ROUTING PROBLEMS 

1. Background 

The Vehicle Routing Problem (VRP) is a broad class of combinatorial 

optimization problems, which have been studied since the 1800’s.  A general description 

of these types of problems which is accepted by many researchers is provided by the 

following excerpt. 

The distribution of goods concerns the service, in a given time period, of a 
set of customers by a set of vehicles, which are located in one or more 
depots, are operated by a set of crews (drivers), and perform their 
movements by using an appropriate road network.  In particular, the 
solution of a VRP calls for the determination of a set of routes, each 
performed by a single vehicle that starts and ends at its own depot, such 
that all the requirements of the customers are fulfilled, all the operational 
constraints are satisfied, and the global transportation cost is minimized. 

(Toth and Vigo 2002) 

In its simplest form, this problem considers a fleet of vehicles of uniform capacity 

while more complex versions consider heterogeneous fleets of vehicles.  A specific case 

of the VRP where only one vehicle is available at the depot and no additional operational 

constraints are imposed is commonly referred to as the Traveling Salesman Problem 

(TSP) (Toth and Vigo 2002).  An extension of the TSP which is of particular relevance to 

our study is the Orienteering Problem (OP) in which the mandatory visit requirement is 

eliminated and a prize is associated with each customer.  In this instance, the travel cost 

objective is stated as a constraint and the aim is to find a route that maximizes collected 
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profit while ensuring that a predetermined maximum travel cost is not exceeded (Feillet, 

et al. 2005).  It is important to note that some authors make no distinction between the OP 

and other named problems such at the Prize Collecting Traveling Salesman Problem and 

the Selective Traveling Salesman Problem while others note subtle differences.  An 

additional constraint that can be added to any of these problems is time windows.  In this 

case the visit to each customer must occur within a specified time window specific to that 

customer in order to collect a reward. 

2. Multi-Player Orienteering Problem with Time-Windows 

Moser (1990) develops a scheduling and routing tool for aerial reconnaissance 

vehicles.  In his thesis, he considers the following characteristics: 

• A set of targets N that includes a depot (designated as target number one). 

• A nonnegative cost cij to travel between each pair of targets (i,j) is the distance 
between target i and target j. 

• Associated with each target i is a nonnegative point value pi (except for the depot 
which is assigned p1 = 0). 

• Each target has a service time, si, which is the time required for a vehicle to 
service that target. 

• The travel costs between targets can vary between vehicles but service times 
remain the same regardless of the vehicle servicing the target. 

• Each target has a target window defined by the earliest (ei) and latest (li) times 
that service may begin for that target. 

Moser refers to this problem as the Multi-Player Orienteering Problem with Time-

Windows (MPOPTW) that he formulates into an integer linear program and solves using 

both optimization as well as heuristic approaches.  As a result of his model, Moser offers 

a planning tool capable of accepting various target and vehicle data as well as 

commander’s guidance regarding target priority and produces a good solution to the 

routing and scheduling problem for these vehicles.  Figure 6 depicts an example solution 

taken from Moser (1990).  In this figure, each dot represents a potential ISR target 

(customer) having a specific reward and service time.  Near optimal routes are depicted  
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for two vehicles operating from a common depot which allows for the collection of a 

maximum reward while meeting a time constraint determined by each aircraft’s fuel 

supply. 

 

 
Figure 6.   MPOPTW example problem (From Moser 1990). 

3. Close Enough Traveling Salesman Problem 

Golden and Wasil (2006) introduce the Close Enough Traveling Salesman 

Problem (CETSP).  In this problem, a set of “supernodes” is created such that each 

customer is within a given distance of at least one supernode.  The problem is then solved 

over this set of supernodes that allow the vehicles to get within a distance determined to 

be close enough to service each customer.  A specific example given by Golden and 

Wasil is that of meter readers equipped with Radio Frequency Identification Technology.  
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Until recently, meter readers were required to visit each customer in order to manually 

read their meter.  With Radio Frequency Identification Technology, readers are now only 

required to get within a given distance that allows them to remotely read each meter, 

allowing a CETSP approach.  Figure 7 depicts an example solution taken from Golden 

and Wasil (2006). 

 
Figure 7.   CETSP example solution (From Golden and Wasil 2006). 

 

In this example, the small circles represent customers while the crosses represent 

supernodes.   The route depicted allows the vehicle to get within a distance determined to 

be close enough to each customer and hence allows it to service every one. 

D. LITERATURE REVIEW CONCLUSIONS 

Based on our review of emerging UAS and sensor technology coupled with our 

appraisal of UAS employment, we reason that there is sufficient cause to pursue a model 

which would optimize the use of these assets as the basis of a structured concept of 

operations.  Furthermore, our review of related VRPs revealed no model currently in 

existence which is ideally suited for the type of problem we consider.  While Jones 
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(2006) offers a model which optimizes the allocation of assets on a grand scale by 

dividing them between sectors, our goal is to take this idea a step further by determining 

optimal routes within each sector.   
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III. MODEL DEVELOPMENT AND RESTRICTIONS 

In this chapter, we consider the IED interdiction problem as a VRP and present a 

formulation.  We begin by considering the simple case where IED behave as static targets 

which last for indefinite periods of time and proceed by using the MPOPTW model as a 

starting point in the formulation of a new model for the optimization of UAS routing – 

specific to IED interdiction – minus the time windows.  Subsequently, we consider the 

complexity of our problem and several restrictions to it.  Additionally, we address the 

impact of weather effects on UAS and introduce a method to account for winds in our 

model.  We then present a preprocessing approach using Visual Basic for Applications 

(VBA) and Microsoft Excel which greatly reduces the size of our model by applying a 

moderate restriction to the problem, and implement the method of accounting for wind 

effects (Walkenbach, 2004).  Next, we consider the case where multiple aircraft are 

operating in close proximity, and require positive separation.  For this case, we present 

additional constraints which impose explicit de-confliction of aircraft.  We finish by 

examining the more realistic case where blue force activity triggers IED events.  These 

events present fleeting windows of opportunity and can occur only during periods of time 

determined by blue force locations.  We consider the possibility of combining prediction 

model output with information regarding blue force activity to establish time windows for 

the nodes in our network and we present additional constraints to account for these. 

A. MODEL DEVELOPMENT 

We formulate the IED interdiction problem as an IP, in the following manner.  Let 

U be a set of UAS dedicated to the IED interdiction effort for which there is a search 

period determined by aircraft endurance.  The search area is discretized and reduced to a 

finite number I of suitably sized, square cells, each containing a portion of the road 

network within our AO.  Cells between 50 and 800 meters square are recommended for 

use in the IED prediction model Threat Mapper (Riese 2006), while Lantz (2006) used 

200-meter square cells in his model.  Therefore, cells of size 200 meters square satisfy 

both models discussed and reasonably smaller than the sweep widths of sensors to be 
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studied.  These cells i can be treated as a network of nodes, each of which has been 

assigned a nonnegative, relative point value by a prediction model that represents its 

likelihood of containing an IED event on a given day.  For the purpose of our model, we 

consider these assigned values as rewards pi which are obtained when a UAS searches a 

respective node i; the total reward collected representing the expected number of IEDs 

detected.  We add to this network additional nodes representing our UAS depots that are 

assigned pi = 0.  We let ciju be the travel time between i and j for UAS u.  As with the 

MPOPTW and other VRPs, we discretize the search period into T time-steps 

{ }( 1,  2,...,  )t T∈  and set ciju equal to the number of time-steps required – rounded up to 

the next integer value – for UAS u to travel from i to j. 

 One complication of our study is the decision of whether a cell may be searched 

multiple times, and if so how often and at what reward?  The problem here is that 

vehicles permitted to search nodes multiple times may simply loop over the same nodes 

for extended periods picking up rewards which are not representative of the actual 

situation.  Furthermore, the prediction models which describe our situation, assign values 

on a daily basis making rewards for multiple visits difficult to assign.  Therefore, we 

begin by considering the simple case where IED are placed at night and we employ our 

sensor in the early morning, before the IED are to be used in an attack.  The IED events 

in this case become static targets with no time windows associated and, assuming a 

perfect sensor, there is no value in searching a cell multiple times.  An additional concern 

however, is that vehicles not permitted to revisit nodes in a network may be forced to use 

suboptimal paths to continue a search and should be permitted to revisit nodes for transit 

purposes only.  In answer to these complications, we let a be a set of actions which can 

be performed by a UAS at each node – search or transit – and limit the number of times a 

node is searched to one.  In Section E, we consider additional factors which potentially 

provide a basis from which to assign time windows to IED events and a way to account 

for them in our model.  For the time being, we complete the formulation with a binary 

decision variable which represents whether or not UAS u performs action a at node i and 

travels from node i to node j during time-step t, given by Xi,j,t,u,a. 

The formulation of our model is as follows. 
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Indices 

i,j  Nodes, { },   1, 2,..., i j I∈ . 

u  UAS, { }  1, 2,..., .u U∈  

t  Time-steps, { }  1, 2,..., t T∈ . 

a  Action to be performed at a node (‘search’ or ‘transit’). 

 

Sets 

F(i)  Forward star of node i. 

R(i)  Reverse star of node i. 

 

Data 

pi  Probability of IED at node i. 

du  Node which serves as depot of UAS u. 

ciju  Travel time from node i to j for UAS u, rounded up to the nearest time- 

  step. 

 

Binary Variables 

Xi,j,t,u,a  1 if UAS u travels from node i to node j during time-step t, and performs  

  action a at node i, 0 otherwise. 
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Mathematical Formulation 
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Equation (1) defines our objective function which represents the total reward 

collected during a given time horizon T.  Constraint (2) ensures that each UAS begins its 

route from its depot.  The strict equality of this constraint forces each UAS to begin a 

route at time-step 1.  Constraint (3) is a balance of flow constraint, which ensures that if a 

UAS arrives at a node during any given time-step, it must depart that node on the same 

time-step.  In constraint (4), we limit the number of times a reward is collected for each 

node to one; however, we permit UAS to transit previously visited nodes with no reward 

collection.  Finally, constraint (5) ensures that each UAS returns to its depot no later than 

the last time-step. Note that we permit UAS to return home early with no penalty.  This is 

an important aspect of the model because an optimal solution may result in the UAS 

arriving at the depot prior to the end of the search period with the next improved solution 

requiring more time than the search period permits. 
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B. RESTRICTIONS TO THE PROBLEM 

In order to frame the size of our problem, we consider the number of arcs 

involved.  We examine the limited case of a sector, which contains 100 nodes, searched 

by two UAS, which are capable of performing two actions at each node.  For this 

network, we define an arc to be the straight line flight segment between two nodes.  If an 

arc exists from each node to all other nodes – for each UAS and each action – the 

network then contains 2 22 = 100 2 2 40,000I U ⋅ ⋅ ⋅ =  potential arcs.  This set of arcs is 

then duplicated for each time-step in the time horizon.  For example, if T = 50, then this 

network would contain 2 2 50 = 2,000,000I U ⋅ ⋅  arcs.  For our problem, this results in a 

significant amount of computing time for even the most efficient integer programming 

solvers available.  With this in mind, we consider several restrictions to the problem in an 

attempt to produce solutions within a reasonable margin of the optimal solution in an 

acceptable period of computing time.  Our analysis examines the use of the following 

restrictions and their impact on the optimal solution. 

1. Node Clustering 

We reason that a logical starting point with respect to restricting the problem is in 

dealing with nodes, which are located in close proximity to each other.  Therefore, we 

refer to the first set of restrictions that we consider as node clustering. These cases 

present situations where it is sensible to trim certain arcs from the network and thereby 

reduce the number of possible solutions.  We examine two cases and submit that, 

depending on the sweep-width of the UAS being modeled, we can apply rules with little 

or no impact on the optimal solution.  The first case involves a sweep-width wide enough 

to cover nodes adjacent to one another, simply referred to as the large sweep-width case.  

The second addresses sweep-widths, which do not meet this criterion, and is 

consequently referred to as the small sweep-width case. 

a. Large Sweep-width Case 

For this case we apply the CETSP similar to the example given by Golden 

and Wasil (2006) and reassign reward values of nodes, which are in close proximity 
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according to two sets of circumstances.  For the situation where two nodes are uniquely 

adjacent to each other and set somewhat apart from other nodes in the network, we 

submit the rule depicted in Figure 8 which simply eliminates the node of lesser reward 

and adds its reward to the adjacent node.  This clustering rule has the effect of creating 

one node of relatively high value and fewer arcs necessary to achieve this reward, which 

simplifies the decision of whether or not to include this node in an optimal solution.  For 

a network of 100 nodes and 1002 or 10,000 arcs per UAS, per time-step, we potentially 

eliminate up to 99 arcs going into the eliminated node as well as 99 arcs going out of it 

for a potential total reduction of 198 arcs (per UAS, per time-step) for each occurrence of 

this situation. 

 
Figure 8.   Node clustering for UAS with large sweep-width (Example 1). 

 

A more likely occurrence, given that the nodes in our sector correspond to 

a road network, is the situation where several nodes are closely aligned in a row.  For this 

circumstance, we submit the rule depicted in Figure 9.  In this case we eliminate nodes 

and reassign rewards similar to the previous case; however we do this on the basis of 

position rather than reward value.  We eliminate the node on each end and reassign the 

reward to the adjacent node.  Any node which falls between these new end nodes is also 

eliminated with its reward divided between the new end nodes.  For a 100 arc network 

similar to the one previously discussed, the situation in Figure 9 presents an opportunity 
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to eliminate three nodes for a total of up to 3 2 99 or 594⋅ ⋅  potential arcs (per UAS, per 

time-step) for the particular situation depicted. 

 

Example 2: Large sweep-width, nodes 
closely aligned in a row.

• Arcs into and out of nodes 4, 8 and 10 
are eliminated.

• Reward of node 4 added to node 7.

• Reward of node 10 added to node 9.

• Reward of node 8 divided between 
nodes 7 and 9.

7

9

4

8

10

7

9

4

8

10

 
Figure 9.   Node clustering for UAS with large sweep-width (Example 2). 

 

b. Small Sweep-width Case 

For the case where sweep-width is not large enough to sufficiently cover 

adjacent nodes, we consider only the situation of several nodes in a row and submit the 

rule depicted in Figure 10.  We reason that in most cases where a row of nodes exist, it is 

beneficial to enter at one end and fly along the row picking up all the rewards before 

altering course.  This clustering rule has the effect of creating one high value node at the 

center of the row which simplifies the decision whether of not to enter the row.  By 

applying this rule, we would eliminate 2 2 99 or 396⋅ ⋅  arcs (per UAS, per time-step) for 

the particular situation depicted. 
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Example 3: Small sweep-width, nodes 
closely aligned in a row.

• Arcs into and out of nodes 7 and 9 are 
eliminated.

• Rewards from 7 and 9 added to node 8.

• Node 8 is accessible only through 
nodes 4 and 10.
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Figure 10.   Node clustering for UAS with small sweep-width (Example 3). 

 

We present a brief description of a spreadsheet model which we use for 

preprocessing in Section D.  In order to implement the node clustering rules presented 

here, we create a macro in this preprocessing model as follows.  We read in the given 

value for sweep-width as well as waypoint number, row indices, column indices and 

rewards.  We then eliminate nodes and reassign rewards depending on the sweep-width 

of the UAS modeled according to these rules. 

2. Arc Filtering 

In addition to node clustering, we consider a second set of restrictions which we 

refer to as arc filtering.  An important aspect of our model formulation is that UAS 

achieve rewards as they depart searched nodes.  After clustering the nodes as discussed, 

we find that there are still many cases in our network where longer arcs strictly over-fly 

shorter arcs, yet do not account for their reward.  These are circumstances which allow us 

to significantly reduce the network with no effect on the optimal solution.  An example of 

this situation is depicted in Figure 11. 
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Example 1:

• c3,7,u + c7,8,u = c3,8,u

• Arc (3,8) over-flies node 7 but does not 
account for its reward.

• Elimination of Arc (3,8) does not effect 
the optimal solution.

3

7

8

3

7

8

 
Figure 11.   Arc filtering (Example 1). 

 

Less obvious, yet still advantageous situations are those where the center node is 

only slightly offset from the arc connecting the other two.  Depending on the geometry of 

the situation, the center node may lie within the sweep-width of a UAS traveling between 

the two outside nodes.  Superficially, it may seem advantageous to eliminate the shorter 

arcs in favor of the long arc and somehow account for the reward of the center node.  

However, further contemplation reveals that elimination of the short arcs will restrict a 

significant number of possible paths involving nodes outside the three nodes considered.  

Furthermore, we reason that there are additional situations where the center node lays 

outside the sweep-width yet the difference between the combined length of the two short 

arcs and the long arc is insignificant.  Consequently, we establish an additional arc 

filtering restriction by eliminating arcs based on the change in distance, δ, between the 

two possible paths in these situations, which we present in Figure 12. 

Example 2:
• If c3,5,u+c5,9,u < (1+δ) c3,9,u, where δ

represents an arc filtering criteria.
– Consider elimination of arc (3,9) as a 

reasonable restriction of the problem. 3
5

9

3
5

9

 
Figure 12.   Arc filtering (Example 2). 

 

3. Arc Length Limit 

Lastly, we rationalize that it is unlikely an optimal route will contain excessively 

long arcs.  For this reason we consider a third type of restriction which simply limits the 
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length of arcs in our network.  Our analysis in Chapter IV examines various potential arc 

length limits, their resulting computing times and effect on the solutions obtained. 

C. WEATHER EFFECTS 

One factor that comes into play in flight planning which can have a profound 

impact on UAS is the effect of winds.  With many UAS operating at speeds less than 30 

mph, it is not unlikely that they are met with winds in excess of their capabilities.  For 

this reason, it is essential that we factor the effects of winds into the travel cost data for 

our model to ensure that it produces routes which are viable, let alone optimal.  In order 

to do this, we turn to a set of equations that is used in flight planning and navigation 

system software, which define a concept known as the “Wind Triangle.”  We use these 

equations; depicted in Figure 13, to calculate UAS groundspeed for each arc in our 

network based on either forecast or observed winds. 

 
Figure 13.   The Wind Triangle. 

 

We then define the travel cost ciju in our model as the distance between nodes i 

and j, divided by the groundspeed achieved between nodes i and j, multiplied by 60 

seconds and again by the number of time-steps desired per minute.  Because our model is 

an IP, we round these values up to the next integer for a close approximation of each arc 

in our network.  Acknowledging that the cumulative effect of these approximations has 

an appreciable impact on total route time, we consider yet one more factor which has not 

been accounted for in our model – extra time incurred with turns.  A simple flight 
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planning technique is to connect waypoints by straight lines and determine travel times 

based on groundspeed and wind as we have previously discussed.  Although some 

aircraft perform turns better than others, none are able to turn instantaneously and 

therefore add some varying distance to their route during each turn as depicted in Figure 

14.  We reason that unused travel time which results from the rounding error balances the 

extra time required for turns and ultimately produce routes which are close to the desired 

time horizon with ciju values that are a reasonable approximation of reality.  We present 

verification of this reasoning in Chapter IV. 

  
Figure 14.   Additional time incurred by turns. 

 

D. PREPROCESSING WITH EXCEL AND VBA 

In order to provide a user interface with a means for changing input parameters to 

create data sets for various situations, we set forth to construct a spreadsheet model which 

carries out node clustering and arc filtering as depicted in Figure 15.  We begin by 

establishing input blocks for the following adjustable parameters and arc filtering criteria: 

UAS airspeed, UAS sweep-width, wind speed, wind direction, arc travel time limit, and 

arc filtering δ.  Additionally, we assign columns of the input sheet to represent various 

waypoint information including number, row index, column index and reward.  We then 

write macros to perform node clustering, calculation of travel times, and arc filtering.  

While the macro for node clustering is straightforward as discussed in Section B, we 

describe the macros for calculation of travel times and arc filtering as follows. 
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Figure 15.    Excel/VBA Preprocessing Model. 

 

1. Travel Times 

In order to create an array of travel times between each pair of nodes we create a 

macro in the following manner.  We begin by reading in given values for UAV speed, 

wind speed, wind direction and travel time limit as well as the results from our node 

clustering macro.  Using the row and column indices, which represent 200 meter 

increments of distance, we compute latitudinal and longitudinal distances between nodes 

i and j.  Of course the values of these component vectors take on positive or negative 

orientations which represent directions north, south, east and west.  By combining these 

component vectors together we find the straight line direction from node i to node j in 

degrees; this resultant vector is known in aviation terms as the “desired course” or 

“track.”  Within the same loop of code we compute the straight line distance between 

these nodes according to the Pythagorean Theorem – a close approximation to the actual 

great circle distances between these points of relatively close proximity.  Next, using the 

wind triangle equations presented in Figure 13, we compute the wind to track angle 
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(WTA), the sin of the wind correction angle or sin(WCA),  the wind correction angle 

(WCA), and finally the groundspeed that will be achieved when UAS u travels from node 

i to j.  We finish by computing the travel time ciju by dividing the distance by the 

groundspeed and then multiplying by 60 seconds and again by the number of time-steps 

desired per minute.  An important distinction to be made is that with the wind effect 

factored in, the travel time from node i to node j will likely be different than from j to i. 

Aside from using this macro to calculate travel times, we also use it to eliminate a 

number of arcs according to the following rules.  First, by reading in the results of our 

node clustering macro, we can eliminate all arcs to and from nodes with zero reward.  By 

performing this step at the beginning of the travel time macro, we eliminate numerous 

unnecessary calculations and achieve a reduction of computing time.  Second, we reason 

that there is no use for arcs which go from a node to itself, and therefore eliminate all arcs 

having distances of zero.  The exceptions to this rule are depot nodes which are assigned 

arcs returning to them with a travel time of one time-step.  This construct permits a UAS 

to return to its respective depot prior to the last time-step and loiter there until the end of 

the search period with no penalty.  Finally, we impose the arc length limit restriction 

proposed in Section B by eliminating all arcs with travel times in excess of the travel time 

limit provided as input.  Note that this restriction is not applied to the arc lengths as 

measured in distances but to the actual travel times which are the true cost that they 

demand as a result of headwinds or tailwinds. 

The product of this macro is an Excel sheet that contains an array of travel times 

for all possible combinations of nodes.  Arcs which have been selected for elimination 

are assigned a travel time in excess of the cardinality of time-steps, say 99, which allows 

them to be identified and ignored later by an optimization solver.  

 2. Arc Filtering   

After the node clustering and travel time macros have been completed, a third 

macro is used to apply the arc filtering rules previously discussed.  We begin by 

establishing an additional sheet in the model which will receive reduced network in 

forward star format.  Next, we read in an input value which we call δ that represents the 
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user’s criteria for filtering arcs according to the rule presented in Figure 12.  We then 

iterate through the array created by the travel time macro, creating the forward star of all 

nodes which have not been eliminated.  Subsequently, we sort the forward star according 

to travel time in descending order.  We then iterate through the list of arcs, beginning 

with the longest, and perform a comparison between each arc and other possible paths.  

With each arc, we establish nodes i and j, then iterate through the list of nodes k in the 

network for a comparison of the travel time ijuc  with the summed travel time iku kjuc c+ . 

We perform this loop of comparisons in two separate routines and eliminate arcs 

according to the following criteria.  For the first routine, if 1.005  iku kju ijuc c c+ < i , then 

node k is determined to be within a negligible distance of the path from i to j and thus the 

arc from i to j is eliminated in accordance with the example in Figure 12.  In the second 

routine, if ( )1   iku kju ijuc c cδ+ < + i , then the arc from i to j is removed imposing a modest 

restriction to the problem.  One important implication of these routines is that they result 

in a compounding effect that we present in Figure 16.  While the elimination of each arc 

results in a negligible change, subsequent arc eliminations can make the new shortest 

path between i and j significantly longer than the original shortest path. 

3
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node 9.

 
Figure 16.   Compounding affect of arc filtering. 

 

 However, this effect is kept in check by the arc length limit restriction which has 

been previously imposed by the travel time macro.  In order to quantify the limit of this 

effect, we present the following example.  Assume we are operating a UAS with a cruise 

speed of 40 knots (or 78.1 km/hr) in a prevailing wind of 15 knots (or 27.8 km/hr), and 
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let α represent the longest possible arc in the network.  Then for a travel time limit of say 

3 minutes, α would represent the longest possible distance covered with a direct tail wind 

in that amount of time.  Therefore, in this case ( )74.1 27.8
60  3 5.1 kmα += ≈i .  Furthermore, 

let β represent the shortest arc possible which is determined by the size of our 200 meter 

nodes equating to 0.2 km.  The ratio of α and β then represent the extreme case or the 

maximum number of times that δ can be compounded and the maximum total additional 

distance that can be induced is: 

5.1   0.1 2.55 km
0.2

α δ
β

⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

i i  

The maximum percent change in this case would be 2.55/5.1 = 50% increase in travel 

time required for the shortest path from node i to node j.  Considering that the resulting 

path due to arc eliminations would have the benefit of accumulating rewards associated 

with α/β = 5.1/0.2 ≈ 25 additional nodes, it is reasonable to believe that this is a modest 

restriction of the problem. 

E. AIRCRAFT DE-CONFLICTION 

In some cases, particularly with small UAS, multiple aircraft are assigned to work 

in a given sector within a limited altitude block.  For these situations it is indispensable 

that we ensure positive separation of aircraft throughout the search period.  In order to 

address this challenge we present the following formulation to be added to our model. 

Additional Index 

g  Group of UAS to be de-conflicted. 

 

Additional Sets 

Ug  Vehicles   u U∈  in group g.  All vehicles in a group are de-conflicted. 

A(i,j)  Set of arcs which cross arc (i,j). 

D(t)  Set of time-steps to close to t for adequate separation of UAS. 
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Additional Constraints 

', ', ', ,
( ', ') ( , ), ' ( ), ,

  1 , , ,                                     (Deconfliction)  (6)  
g

i j t u a
i j A i j t D t u U a

X i j t g
∈ ∈ ∈

≤ ∀∑  

 

These additional constraints permit routes to cross one another, yet ensure that 

UAS maintain a minimum lateral distance between one another. 

F. TIME WINDOWS 

Up to this point we have limited our model to a case where IED events have an 

unlimited window of opportunity for detection.  Reality is that the opportunity for 

identifying an impending IED attack begins when the emplacers arrive at the scene and 

ends when the IED is detonated.  Ostensibly, these incidents occur at random times and 

last for random lengths of time providing few clues as to when and where they might take 

place.  The truth is that they are specifically triggered by blue force activity which 

provides an insight into the times and locations that they might occur.  In fact, when we 

consider that the presence of blue forces is a prerequisite for a casualty inflicting IED 

incident, we reason that locations of blue forces over the course of time limits the chances 

that they can occur.  With this in mind, if we are able to merge information about planned 

blue force activity with information gained from IED prediction models, we reason that 

time windows for visits to certain nodes can be established for the model. 

Consider the case where it is known in advance that a route clearance team will 

sweep a particular route some time before we expect a convoy to travel the route.  If these 

operations take place at their planned times, then for each particular cell that contains a 

portion of the route in question we have a window of opportunity for insurgents to 

emplace an IED and target the coming convoy.  This window begins at the time the route 

clearance team is outside of visual range of the cell and lasts until the convoy arrives.  

This window of opportunity for the insurgents translates to a time window that the cell 

should be a candidate for search.  Therefore, assuming that accurate information of blue 

force activity is available; we propose the following additions to our model. 
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Additional Set 

W(i) Time-steps t that are within time window for node i 

 

Additional Constraints 

, , , ,' '
( ), ( ),

  0                          (Prevent searches outside time window)  (7) i j t u search
j F i t W i u

X i
∈ ∉

= ∀∑  

While we acknowledge that blue force operations do not always go as planned, 

we believe this type of coordination between UAS efforts and blue force activity does 

stand to bear fruit not only in preventing IED casualties but also by catching insurgents in 

the act, revealing critical intelligence for disrupting the network behind the device.  

Furthermore, the addition of the constraints proposed is a significant restriction of our 

original problem which would have an expected benefit of reducing computing time 

and/or permitting the relaxation of restrictions previously implemented. 
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IV. COMPUTATIONAL STUDY 

This chapter presents results obtained through testing ISOM in field experiments 

with the use of actual UAS equipment and experienced personnel.  We begin our 

discussion by developing a scenario which we use to study ISOM in two NPS-SOCCOM 

field exercises at Camp Roberts.  Using this scenario as a basis, we then examine 

implementation of our model in the General Algebraic Modeling System (GAMS) 

(GAMS, 2007) and discuss considerations we took into account in order to find solutions 

reasonably close to optimal while reducing computing time to a practical level.  Finally, 

we present results of the field exercises and discuss learning points that we garner from 

these events. 

A. SCENARIO DEVELOPMENT 

After establishing the Camp Roberts training area as the site for our 

experimentation, we discretize the space within the AO that contains all National 

Geospatial-Intelligence Agency (NGA) identified roads into a grid of 200 meter by 200 

meter cells.  We accomplish this by laying a spreadsheet of square cells over a map of the 

area generated with the use of FalconView flight planning software (FalconView, 2007).  

In the absence of real world data for our area of study, including a history of IED events, 

associated infrastructure and related geographic features, it was not feasible to implement 

an actual prediction model for this region.  Therefore, data is randomly generated to 

mimic prediction model output over the Camp Roberts area for the purposes of these 

experiments.  Next, the set of waypoints is reduced to include only the upper 30% of 

reward values in order to reduce the size of the problem for an initial test case.  This 

resulted in a set of 80 waypoints including four established as UAS depots.   

Three types of UAS are available for the experiments: Scan Eagle, Buster, and 

Raven which operate at 40, 35 and 25 knots respectively.  In order to test various aspects 

of our model, it is decided that two types of experiments would be conducted 

concurrently.   Scan Eagle, which is operated at a higher altitude and has a relatively 

large sweep-width would be used to test the large sweep-width case of the model, and 
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would be free of the de-confliction constraint proposed in Chapter III.  Buster and Raven, 

which have smaller sweep-widths and operate within a narrow block of altitude required 

de-confliction which presents a realistic set of circumstances for testing the multiple UAS 

case discussed in Chapter III.  In order to conduct several experiments in the time 

allotted, the search periods are limited to 25 minutes in length and broken down into 50, 

30-second time-steps which resulted in a problem size of 2 2 50 =I U ⋅ ⋅  802·2·50 = 

1,280,000 arcs before restrictions are applied. 

With the resulting problem requiring a significant amount of computing time, we 

consider means to reduce its size.  In order to avoid a complete duplication of the arc set 

for transit purposes, we reason that a limited number of transit nodes achieve our 

objective of ensuring freedom of movement.  For that reason, we select one node for each 

one kilometer square block within our sector to act as a transit node.  Furthermore, we 

limit transit arcs departing each transit node to only those other transit nodes which are 

leading in the direction of the depots and within a limited distance of the originating 

node.  The resulting network then contains 802 search arcs, plus approximately 17·3 

transit arcs for a total of 6451 arcs for each UAS and each time-step and hence for the 

two UAS, 50 time-step case previously discussed, we now have 6451·2·50 = 645,100 

arcs. 

While the most important aspect of the experiments is to study the mechanics of 

modeling UAS flight, in order to add an element of appeal for our operators, a group of 

participants is formed in the role of a red team which would act as IED emplacers.  

Keeping in mind that our study does not concern development or testing of sensor 

technology, the red team is equipped with a number of large, conspicuously colored tarps 

which would serve as notional IED detection opportunities.  In order to place these 

detection opportunities in a random fashion – according to the likelihood values of our 

cells, we compared the column of rewards in our Excel preprocessing model with a 

column of random numbers.  We then scaled the column of rewards to a level that 

produced the desired number of instances where the random number was larger than the 

reward value.  Next, we actuated the random number generator to create eight scenarios, 
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each having four or five IED emplacement sites.  The red team leader then drew one of 

these scenarios at random for each experiment and placed the IED accordingly. 

B. IMPLEMENTATION IN GAMS 

With the experiment scenario established, we implement our Integer Program 

model in GAMS and found optimal or near-optimal solutions using the CPLEX solver 

(ILOG, 2007).  The following results were obtained by running the model on a Dell 

Precision PWS690 Intel® Xeon™ CPU 3.37GHz processor, with 3.00 GB of RAM. 

1. Use of CPLEX Options 

In order to reduce computing time we consider the use of CPLEX options which 

can be used to enhance the solver by tailoring it for a particular problem.  To examine the 

effect of CPLEX options, we consider the case where a sector to be searched by a single 

UAS operating from depot #1 has been reduced to contain 77 nodes – including the 

depot.  For this case, we used the following input parameters. UAS airspeed = 40 knots, 

sweep-width = 0.5, wind from 285○ at 13 knots, δ = 0.1, travel time limit = 1.75 minutes 

and an optimality tolerance of 0.05.  The resulting network contains 514 search arcs plus 

17·3 = 51 transit arcs for each time-step resulting in a total of 28,250. 

The first option we consider is ‘branch direction’ (brdir), an option which is used 

to set the priority order for branching at each node in the branch and bound tree.  For 

brdir, the default setting of ‘0’ lets the algorithm decide the branch direction, while ‘-1’ 

sets the down-branch as priority and ‘1’ sets the up-branch as priority.  A second option 

considered is the ‘pricing strategy for dual simplex method’ (dpriind).  This option 

permits the selection between six different dual, steepest-edge pricing selections which 

can be particularly efficient compared to primal steepest-edge pricing.  Finally, a third 

option we investigate is the ‘cuts’ option which permits selection between five different 

aggressiveness levels of CPLEX cut generation.  We run the model with each of the 

options selected exclusively, and for each setting available for each option.  We then 

select a limited number of combinations of options and settings and present the results in 

Table 1. 
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Table 1.   Results from various CPLEX option selections. 

Computing Time
brdir dpriind cuts [min:sec]

0 -- -- 8:12
1 -- -- 5:37
-1 -- -- 9:23
-- 0 -- 8:07
-- 1 -- 28:16
-- 2 -- 4:54
-- 3 -- 14:30
-- 4 -- 6:04
-- 5 -- 6:07
-- -- -1 7:35
-- -- 0 8:06
-- -- 1 5:10
-- -- 2 9:30
-- -- 3 26:38
1 2 -- 7:17
-1 2 -- 6:40
-- 2 1 9:11
1 -- 1 10:59

CPLEX Option Selections/Settings

Model Inputs: UAS Speed – 40 knots, Wind – 285 / 13, Arc Filtering δ  – 0.1, Travel 
Time Limit – 1.75 min, Sensor Sweep-width – 0.5 (Resulting in 514 search arcs per 
time-step), Optimality tolerance – 0.05.  The number of transit arcs (per time-step) 
was 51.

 

Noting that the run depicted in the first row of Table 1 represents the equivalent 

of not using any options, this run establishes our baseline computing time of 8:12.  

Comparing the results in the table, we see a wide range of computing times and identify 

six configurations that appear to be competitive which are depicted in bold print.  We 

make a closer examination of these six options as well as the default case by creating four 

different problems from our basic scenario with varying wind inputs to the preprocessing 

model.  We then ran the GAMS model with each of the six CPLEX option configurations 

and for each of the four problems created, and present the results of these runs in Table 2.  

From these results we see that while the solution obtained for each problem is very close, 

regardless of the configuration, the required computing times vary considerably.  We also 
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see that the configuration of having the exclusive option brdir = 1 resulted in the best 

performance for two out of the four problems presented and displayed consistent 

performance throughout this experiment.  For this reason we choose this configuration 

for the remaining of our analysis. 

 
Table 2.   A closer examination of six CPLEX option choices. 

Computing Time
Winds # Search Arcs brdir dpriind cuts [min:sec] IP Solution

-- -- -- 4:46 2.227
1 -- -- 4:27 2.227
-- 2 -- 3:57 2.227
-- 4 -- 3:44 2.227
-- 5 -- 4:51 2.227
-- -- 1 4:24 2.227
-1 2 -- 3:58 2.227
-- -- -- 2:40 1.939
1 -- -- 1:58 1.939
-- 2 -- 2:18 1.939
-- 4 -- 2:52 1.939
-- 5 -- 2:03 1.939
-- -- 1 2:06 1.939
-1 2 -- 2:16 1.908
-- -- -- 3:24 2.337
1 -- -- 3:02 2.339
-- 2 -- 2:56 2.339
-- 4 -- 3:30 2.339
-- 5 -- 5:03 2.315
-- -- 1 3:52 2.339
-1 2 -- 3:50 2.339
-- -- -- 12:38 2.729
1 -- -- 11:34 2.729
-- 2 -- 11:40 2.729
-- 4 -- 16:02 2.712
-- 5 -- 16:20 2.716
-- -- 1 19:30 2.694
-1 2 -- 16:38 2.705

575

419037 / 15

135 / 15 437

Model Inputs: Same as for Table 1 with the exception of wind. The number of transit arcs for this network was 51 (per time-step).

215 / 15 497

360 / 0

CPLEX Option Selections/Settings

 

2. Effect of Restrictions on Optimal Value 

With CPLEX tuned for our problem, we now proceed by examining the effects of 

restrictions presented in Chapter III.  We begin by establishing a base case from which to 

judge the quality of solutions obtained with restrictions imposed based on the following 

considerations.  First, we reason that while node clustering will likely have some 

measurable affect on the optimal value, it is a necessary step in order to produce routes 

that are mechanically feasible with a reasonable number of turns.  Furthermore, we 

reason that the elimination of arcs which strictly coincide with shorter arcs does not apply 
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a restriction to the problem but simplifies the solution by removing arcs which would not 

be part of an optimal solution.  After applying these steps, our base case for the single 

UAS operating in a 77 node network, with a 50 time-step search period results in 1997 

search arcs plus 51 transit arcs  for a total of 2048·50 = 102,400 arcs. 

With a base case established, we create three different problems by applying wind 

inputs of 360○ at 0 knots, 275○ at 15 knots and 315○ at 12 knots to our preprocessing 

model.  For each wind input, we establish a solution with the base case inputs and with 

optimality criteria (OPTCR) of 1%.  We then run the model with various increasing 

levels of filtering affects, and for OPTCR of 1% and 5% and present results in Table 3. 

 
Table 3.   Affect of restrictions on optimality. 

Travel Time Computing Time
Winds Limit δ # Search Arcs OPTCR [hr:min:sec] IP Solution

-- -- 1155 0.01 5:09:49 2.763
-- -- 1155 0.05 3:48:37 2.763
4 -- 1117 0.01 4:34:32 2.763
4 -- 1117 0.05 4:00:16 2.742
2 -- 735 0.01 1:32:13 2.763
2 -- 735 0.05 1:18:49 2.754
-- 0.05 883 0.01 3:51:01 2.763
-- 0.05 883 0.05 2:46:07 2.763
4 0.05 841 0.05 0:56:33 2.763
2 0.05 555 0.05 0:37:05 2.726
-- -- 1100 0.01 1:07:17 2.497
-- -- 1100 0.05 0:48:48 2.497
4 -- 1019 0.01 1:09:46 2.497
4 -- 1019 0.05 0:40:40 2.497
2 -- 677 0.01 0:50:37 2.497
2 -- 677 0.05 0:37:45 2.493
-- 0.05 868 0.01 0:39:04 2.497
-- 0.05 868 0.05 0:26:19 2.497
4 0.05 791 0.05 0:29:56 2.493
2 0.05 552 0.05 0:20:43 2.478
-- -- 1129 0.01 20:57 2.430
-- -- 1129 0.05 18:23 2.430
4 -- 1073 0.01 13:48 2.430
4 -- 1073 0.05 11:41 2.430
2 -- 711 0.01 36:31 2.390
2 -- 711 0.05 21:43 2.390
-- 0.05 891 0.01 10:34 2.408
-- 0.05 891 0.05 09:06 2.408
4 0.05 833 0.05 11:17 2.408
2 0.05 565 0.05 05:10 2.390

360 / 0

275 / 15

315 / 12

Model inputs were adjusted to create four scenarios of varied complexity which is indicated by the resulting 
number of arcs.  CPLEX option brdir = 1.  The number of transit arcs per time-step was 51.  
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From these results we see significant reductions in computing times with each 

increase in restriction.  In fact the reduction in computing time for each of the three 

problems with the most restrictive inputs (travel time limit of 2 minutes and δ = 0.05) 

coupled with the widest optimality tolerance (0.05) can be computed to be 88%, 69% and 

75% respectively for an average reduction of 77%.  In comparison with the base case, the 

first problem presented in Table 3 is formed by applying the restrictions in a notional 

situation of calm wind.  The most restricted case for this problem resulted in 555 search 

arcs which implies a network size of (555+51)·50 = 30,300 arcs total and a reduction of 

102,400-30,300 = 90,100 or 74.8%. Furthermore, for each of the three problems the 

solution obtained with the most restricted configuration and optimality tolerance of 0.05 

was within 2% of the corresponding base case with optimality tolerance of 0.01.  This 

implies that all of these solutions are within 3% of the optimal solution – a nominal 

reduction considering the resulting reduction in computing time. 

C. FIELD EXPERIMENT RESULTS 

 Field experiments were conducted during exercises at Camp Roberts in February 

and again in May of 2007.  The purpose of the experiments was to learn about the 

mechanics of modeling UAS flight and to make corresponding adjustments to the model.  

A screenshot taken from the tactical operations center which shows an example of three 

routes generated by the model for two concurrent experiments is depicted in Figure 17.  

Here, the routes for Scan Eagle, Buster, and Raven are shown in yellow, green, and blue 

respectively.  Buster and Raven were operated in concert with one anther and were de-

conflicted while Scan Eagle was treated as a separate experiment. 

The most important insights that were gained from the exercises at Camp Roberts 

related to the mechanics of modeling UAS operations – specifically in dealing with winds 

and with the extra time required by turns.  In addition to these factors, we recall the error 

incurred by rounding travel times to the next integer time step, and consider its impact on 

the resulting route completion times.  Our initial thoughts were that the rounding error 

and the turn factor would cancel each other to some extent but may require some 

additional adjustment.  For this reason we tested various speed factor inputs ranging from 
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70% to 100% of actual UAS speed.  Additionally, we ran experiments with and without 

wind correction inputs – based on wind data collected on site by a weather balloon – to 

see how effective the model was in producing routes that represent reality.  That is, 

whether the routes produced by the model were achievable by UAS in prevailing wind 

conditions in the time allowed. 

 
Figure 17.   Routes flown during an experiment at Camp Roberts. 

 

Results from nine, tentatively 25-minute experiments involving Buster and Raven 

aircraft we depict in Table 4.  One observation of note is that runs we complete with a 

100% speed factor result in completion times which are generally close to the targeted 25 

minute time horizon while lower speed factors usually resulted in route completion times 

which were short of the time horizon.  The only exception to this finding is experiment 

#3 where Raven completed its route at 28 minutes with 90% speed factor applied and no 

wind correction.  Additionally, experiments conducted without wind correction seem to 

result in a wider variance of completion times for each of the speed factors applied while 

the wind corrected runs seem to have a steady progression in completion times 

corresponding with increasing speed input factors.  While there is not enough data to 

make a conclusive argument, we believe the results do suggest that a speed input factor of 
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100% coupled with our wind correction method produce routes with associated total time 

required that is close to the targeted time horizon set by the experiment length and that 

the rounding error is negated by the extra time required by turns.   

 
Table 4.   Field experiment results: wind correction vs. various speed factors. 

Experiment # Speed Reduction Factor Wind Corrected UAS Actual Time
Buster 13 min
Raven 14 min
Buster 23 min
Raven 24 min
Buster 24 min
Raven 28 min
Buster 20 min
Raven (no data)
Buster 24 min
Raven (no data)
Buster 29 min
Raven (no data)
Buster 22 min
Raven 19 min
Buster 20 min
Raven 21 min
Buster 24 min
Raven 23 min

YES

NO

NO

YES

YES

NO

NO

NO

NO

8

9

90%

100%

5

6

7

70%

90%

90%

90%

100%

100%

85%

1

2

3

4

 

D. MODEL SUCCESS IN DETECTION OPPORTUNITIES 

In order to examine ISOM’s ability to produce an increase in detection 

opportunities we generate four problems by arbitrarily selecting wind inputs from various 

directions and speeds.  Notional routes are then computed for the Scan Eagle UAS using 

a travel time limit of 2 minutes, parameter δ = 0.05 and an optimality tolerance of 0.05. 

We compare the resulting routes of each of these wind inputs with the eight IED 

scenarios used in the exercise at Camp Roberts.  A compilation of the detection 

opportunities which would occur given these circumstances we present in Table 5.  For 

each route we list the wind input, resulting number of arcs (per time-step), resulting 

number of nodes searched (out of 79 possible), the number of IED detection opportunities 

achieved (out of the number possible), and a total number of detection opportunities over 
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all eight scenarios.  The result of this example is that we have an expected 78% of 

detection opportunities achieved while searching an expected 55% of the nodes in the 

reduced network. 

 
Table 5.   Model success rate as measured by detection opportunities. 

Route Wind 1 2 3 4 5 6 7 8 Total
1 035 / 14 478 42 / 79 4 / 5 3 / 4 2 / 4 2 / 4 4 / 4 3 / 4 4 / 4 2 / 4 24 / 33
2 135 / 12 516 41 / 79 4 / 5 3 / 4 3 / 4 2 / 4 4 / 4 3 / 4 3 / 4 2 / 4 24 / 33
3 235 / 10 580 45 / 79 4 / 5 3 / 4 3 / 4 4 / 4 4 / 4 4 / 4 4 / 4 2 / 4 28 / 33
4 310 / 12 568 45 / 79 5 / 5 4 / 4 3 / 4 2 / 4 4 / 4 4 / 4 4 / 4 1 / 4 27 / 33

43.25 / 79 103 / 132
55% 78%

Avg #Cells Searched: 
% Searched: Success Rate: 

#Nodes 
Searched

Grand Total: 

Detection Opportunities/Scenario:# Search 
Arcs
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

This thesis develops a vehicle routing tool for Unmanned Aerial Systems (UAS) 

tasked with interdiction of Improvised Explosive Devices (IED) which we refer to as 

ISOM.  ISOM uses optimization models and algorithms to leverage recent developments 

in IED prediction as well as emerging UAS and sensor technology.  Tactical level 

operators can use ISOM to determine routes that best employ their UAS for the purpose 

of detecting IED or IED related activity. 

ISOM receives output from an existing IED prediction model and uses it as a 

means to establish relative values for searching various portions within a sector of 

operation.  To model interdiction of IED with the aid of a prediction model, we discretize 

the space around roadways within the sector of operation into portions and assign values 

to represent the likelihood of an IED event occurring in that cell the following day.  

These values are then treated as rewards which can be achieved by a UAS after it has 

searched the respective cells.  The output of the tool is a set of routes which focus UAS 

search efforts in the most likely areas of IED occurrence and result in the maximum 

number of detection opportunities within the search time allowed by the UAS endurance. 

1. Measures of Success 

In order to measure the effectiveness of ISOM compared to manual selection of 

routes (after the node clustering step has been accomplished), the scenario used at Camp 

Roberts was presented to a group of experienced UAS operators deployed to Iraq who 

were asked to provide their solutions to this problem had they been given the same 

tasking.  Due to technical challenges that have arisen with the operators deployed to Iraq, 

results from this group are still awaited at the time of this writing.  However, preliminary 

examination reveals that ISOM produces viable routes which result in efficient use of 

given assets.  Field testing of ISOM suggests that it models the mechanics of UAS flight 

quite well.  Routes selected by ISOM display a reasonable number of turns, and result in 

mission times which are close to the intended search period.  This means they will make 
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effective use of sortie time while not extending a UAS beyond its fuel capacity.  

Furthermore, routes do not cross back over themselves to the extent that they seem 

unrealistic or inefficient.  Additionally, reasoning that a random search of 55% of the 

nodes in a network would be expected to achieve 55% of the detection opportunities 

possible, the results depicted in Table 5 suggest that ISOM achieves a (78-55)/55 = 42% 

increase in the likelihood of achieving a detection opportunity over searching the nodes 

in a random manner.   

2. Operational Considerations 

A critical aspect for employment of ISOM is the necessity of preplanned 

coordination.  In order to capitalize on the successes achieved by ISOM there must be a 

means to close the loop when IED or IED emplacing activity is detected.  The 

establishment of an IED radio net is the first necessary step that should be taken.  When 

detection is made, the location should be broadcast over a secure net that all blue force 

units monitor while they operate in areas where IED are likely.  Radio relay would be 

accomplished by airborne platforms such as EA-6Bs, EC-130s and other aircraft that 

routinely fly missions over the AO.  Secondly, a quick reaction force should be assigned 

within each sector of the AO in order to respond to IED emplacement sightings.  When 

such sightings occur, the UAS should maintain sight of insurgents and possibly follow 

them to safe houses or weapons caches.  The respective quick reaction force should be 

alerted in a timely manner so that it can respond appropriately in order to arrest 

insurgents, disarm the device and acquire important intelligence regarding the source of 

the IED. 

B. FUTURE WORK 

1. Dynamic Updates 

Placing a UAS at the right place at the right time requires current, accurate 

information on blue force locations.  In order to achieve the most up to date information 

possible, ISOM should be capable of providing dynamic updates of UAS routes.  

Additionally, while we have presented formulation to account for time windows as a 

means to coordinate with blue force ground activity, we have not tested this aspect of 
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ISOM.  Ideally, the final result of this effort will be as follows.  Routes are pre-selected 

by ISOM based on forecast wind, planned blue force activity and IED prediction model 

results.  As the UAS flies a pre-selected route, ISOM receives additional and updated 

inputs including a forecast UAS position and fuel state, current blue force locations and 

directions of travel, and prevailing winds.  The UAS then receives a dynamic update as it 

reaches the forecast location and fuel state, and flies from that position direct to the first 

waypoint on a route with refined time windows.   

2. Turn Angle Penalties 

An additional aspect of ISOM that should be examined is the effect of turn radius 

on finding IED.  Aside of the extra time that turns require, they also have the effect of 

placing the UAS slightly off its intended course as depicted in Figure 14.  Since this 

effect increases with the angle of the turn, penalties should be considered for high angle 

turns.  This could be achieved with the introduction of an additional index on the binary 

variable to represent the node visited prior to i and could possibly have some positive 

effects on ISOM’s results including smoother routes and shorter computing times. 
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